Coastal Ocean Modeling, Data Assimilation and Forecasting

Yi Chao

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

Satellite Altimetry to enable new Science and Applications

Why do we need to forecast the coastal ocean?

• Important

- Public access: Over 50 percent of the American people live within 50 miles of the ocean
- Resources: Ocean activities contribute ~\$100B and support ~2M jobs
- Habitats: Over 75 percent of the commercially important fish species
- Needs to observe, understand and ultimately predict
 - The oceans drive weather and climate, so if we understand the oceans better, we should be able to better forecast weather/climate
 - Our nation's security, environment, and economy all depend on our ability to understand, monitor, manage, and adapt to changes in our oceans and Great Lakes
 - We know little about the oceans, yet they impact us everyday
 - Our planet is changing quickly in ways that will impact everyone, but exactly how remains unclear

Coastal Ocean Forecasting is similar to Weather Forecasting, but.....unique and complex

Challenge I: Multi-Scale Coastal Ocean Coastal, regional to global scales

Challenge II: Lack of data in coastal zones Baroclinic Tides (M2) Derived from Altimetry and ROMS

Advanced Data Assimilation: 3DVAR to assimilate in situ and satellite measurements

$$x = \begin{pmatrix} S \\ u \\ v \\ T \\ S \end{pmatrix} = \begin{pmatrix} x_{\varsigma} \\ x_{uv} \\ x_{TS} \end{pmatrix} = \begin{pmatrix} x_{\varsigma}^{f} + \Pi \delta x_{TS} + \delta x_{a\varsigma} \\ x_{uv}^{f} + \Gamma \delta x_{TS} + \Phi_{a} \delta x_{a\psi\chi} \\ x_{TS}^{f} + \delta x_{TS} \end{pmatrix}$$
Five Control Variables:
$$Temperature: \delta T$$

$$Salinity: \delta S$$

$$\delta x_{uv}^{G} = \Gamma \delta x_{TS} \quad \text{Geostrophic balance}$$
Non-steric SSH: $\delta X_{a\varsigma}$

$$\delta x_{uv} = \Gamma \delta x_{TS} + \Phi_a \delta x_{a\psi\chi}$$

$$\delta x_{uv}^G = \Gamma \delta x_{TS}$$
 Geostrophic balance

$$\delta x_{\xi} = \Pi \delta x_{TS} + \delta x_{a\xi}$$

 $\delta x_{\varepsilon}^{S} = \Pi \delta x_{TS}$ Vertical integral of the hydrostatic equation

 $\delta\!x_{aw\gamma}$ ageostrophic streamfunction and velocity potential

(Li and Chao et al., JGR, 2008)

Ageostrophic streamfunction: $\delta X_{a\psi}$

Ageostrophic velocity potential: δX_{ay}

California Coastal Ocean Example (http://www.cocmp.org)

Emerging Autonomous Underwater Vehicle (AUV) glider technology to observe the 3D Ocean

0-200 m Slocums

0-700 m Sprays

Impact of Ocean Current Assimilation: Independent data validation

Impact of Surface Current Data Assimilation on Nowcast

RMS

HF (Blue), Analysis (Red) RMS Errors in ADCP2 Zonal Velocity Aug 2008

Correlation

HF (Blue), Analysis (Red) Correlation with ADC P2 Zonal Velocity Aug 2006

ROMS w/o sfc currents

ROMS with sfc currents

Impact of Surface Current Data Assimilation on Forecast

RMS Difference of ROMS HF Fcst/No HF Fcst (Blue/Blue Dashed) and Persistence (Red) for ADCP2 Depth-Averaged V

Real-Time Modeling, Data Assimilation and Forecasting

http://ourocean.jpl.nasa.gov/SCB

AUV glider is used for data assimilation and verification

http://ourocean.jpl.nasa.gov/SCB

Coastal Ocean Forecast Customers (and growing) within Southern California

- Beach goers, surfers
- Sailing, fishing, boating
- Divers
- Marine professionals

ORANGE COUNTY

MORRO BAY

SAN DIEGO

Next Generation Altimetry Satellite (SWOT) to enable future ocean forecasting any where & any time to serve broader application users

